	Objective	Almost	Meeting	Exceeding
1	N1 KPI Calculate intervals across zero	Pupil can work out the difference between ?8 and zero.	Pupil can work out the difference between 4 and 5?	Pupil can work out the connection between finding the difference between negative numbers and subtracting them.
2	N2 Consolidate counting forwards or backwards in steps of powers of 10 for any given number to 1000000	Pupil can count backwards from 374,920 in steps of 10,000.	Pupil can count backwards from 902,401 in steps of 100,000, 10,000, 1000, 100 and 10.	Pupil can reduce any number to zero by subtracting the appropriate number of each of the appropriate powers of 10.
3	N3 Consolidate counting in multiples of 2 , through to 10,25 and 50	Pupil can count up in $6 \mathrm{~s}, 9 \mathrm{~s}$ and 12 s using their knowledge of counting up in 3 s , and in 12 s using their knowledge of counting up in 4 s and 6 s	Pupil can decide whether a number is a multiple of any number by counting up in multiples of that number, developing more efficient strategies than enumerating	Pupil can identify whether numbers are in more than one of the sequences with which they are familiar, developing efficient strategies for deciding.
4	N4 Read and write numbers to 10000 000 and determine the value of digits	Pupil can read and write numbers to ten million that are multiples of 100 .	Pupil can form a number with up to seven digit cards and write it in words.	Pupil can relate megabytes, gigabytes and terabytes and express each in terms of the others.
5	N5 Consolidate reading Roman numerals to 1000 (M) and recognising years written in Roman numerals	Pupil can write the numbers from 1 to 20 using Roman numerals, and write the year 2100 using Roman numerals.	Pupil can write the date using Roman numerals and identify the year a film was made.	Pupil can explain why calculation with large numbers is difficult with Roman numerals and how our place

Coast Academies Maths Framework Step 6
Number

	N6 KPI Use negative numbers in context	Pupil can answer questions such as 'How much colder is $? 5^{\circ} \mathrm{C}$ than $10^{\circ} \mathrm{C}$?	Pupil can answer questions such as 'How much warmer is $? 2^{\circ} \mathrm{C}$ than ? $10^{\circ} \mathrm{C}$?'	Pupil can solve problems such as ordering the changes in temperature between day and night on the planets in the
	N7 Order and compare numbers up to 10000000	Pupil can choose the smaller number out of 800,000 and 8,000,000.	Pupil can place the correct sign ($=$, < and >) in statements such as between $8,282,828$ and 28,282,828.	Pupil can solve problems involving ordering the distances in light years to stars and galaxies.
6	N8 Solve number problems and practical problems with number and place value from the Year 6 curriculum	Pupil can solve problems such as 'The temperature is zero at 10 a.m. It drops to ? $4^{\circ} \mathrm{C}$ by 5 p.m. How much has it dropped?'	Pupil can solve problems such as 'The temperature at sunrise is ? $5^{\circ} \mathrm{C}$ and rises to $8^{\circ} \mathrm{C}$ by midday. How much has it risen?	Pupil can solve problems such as 'What is 10,000 less than 236.7?'
7	N9 KPI Round whole numbers to 10000 000 to a required degree of accuracy	Pupil can round 68 to the nearest 20.	Pupil can round 8,438 to the nearest 50.	Pupil can identify a number over 1000 that rounds to the same number when rounded to the nearest 20 and nearest 50.
8	N10 Use knowledge of the order of operations	Pupil can correctly calculate 7 $+2 \times 3 \text { as } 13 .$	Pupil can correctly calculate 3 ? $5 \times 8+1$ as ? 36 , and $3 \times(5+$ 7) as 36	Pupil can correctly calculate any expression involving brackets and a mixture of the four operations. They solve problems such as 'Insert signs to make the calculation correct: (3 ? 7) ? $6=100$? 5 ? 17 '.

Coast Academies Maths Framework Step 6

Number

9	N11 Consolidate their understanding of the equals sign as representing equivalence between two expressions	Pupil can interpret instances of the equals sign such as $4+$ $8 \times 2=10+10$.	Pupil can deal with a variety of instances of the equals sign including $30 ? ?=12+3 \times 5$	Pupil can solve problems such as $3+5 \times ?=5 \times 10 ? 3 \times 4$.
10	N12 Consolidate understanding of the structure of numbers	Pupil can apply their understanding of multiples to learning the multiplication table facts.	Pupil can apply their understanding of factors to simplifying fractions, for example.	Pupil can apply their understanding of factors and primes to a variety of problems.
11	N13 Consolidate knowledge of types of number	Pupil can identify factors and multiples of familiar numbers.	Pupil can identify factors and multiples of numbers up to 50 and prime numbers up to 20.	Pupil can identify factors and multiples of many numbers and prime numbers beyond 20.

Number

N14 Perform mental calculations,
12 including with mixed operations and large numbers

N15 Consolidate knowledge of addition13 facts and the related subtraction facts, deriving further related facts as required

Pupil can work out 10×6 ? $3 \times$ 4 mentally.	Pupil can work out $12 \times 70+3$ $\times 20$ mentally.	Pupil can solve problems such as 'Using the numbers 6, 3, 5, 9, 25 and 100 once each, use any of the four operations to make the target number of 673'.
Pupil can write several calculations derived from 105 $+60=165$	Pupil can write a variety of calculations derived from 105 $+632=737$.	Pupil can write a variety of calculations derived from 105 + $632=737$ and generalise to describe further calculations.
Pupil can decide, given 30 and 45 , what their common factors and multiples are, with prompts. The pupil can identify prime numbers below 30. They do this using recall, mental calculation and jottings	Pupil can decide, given 35 and 80, what their common factors and multiples are. The pupil can decide whether 133 is a prime number. They do this using recall, mental calculation and jottings	Pupil can identify, given 35 and 80 , the highest common factor and the least common multiple without listing all of the common factors and common multiples. They do this using recall, mental calculation and jottings.

Number

20	N17 Consolidate multiplying and dividing whole numbers and decimals by 10,100 and 1000	Pupil can work out $2.1 \times 10=$ 21 and $56 \div 10=5.6$, applying this in the context of measurement.	Pupil can work out 2.3×1000 $=2300$ and $98 \div 1000=0.098$, applying this in the context of metric measures.	Pupil can calculate 0.012×600 $=7.2$, applying this in a variety of contexts including measures.
21	N18 KPI Solve multi-step addition and subtraction problems in less familiar contexts, deciding which operations and methods to use and why	Pupil can solve problems such as 'I buy a shirt for $\$ 15$ and a pair of jeans for $\$ 26$ and 50 cents. How much change do I get from \$50?	Pupil can solve problems such as 'Jim puts down a deposit of $£ 25$ when he hires a rotavator. He pays $£ 12$ for the first day and $£ 8.50$ for subsequent days. He damages the rotavator on a large stone and loses $£ 12$ of his deposit. He hires the rotavator for two days, what does he pay?'	Pupil can devise a toolkit for solving multi-step addition and subtraction problems and show how it works on a variety of problems.
22	N19 Consolidate solving problems using more than one of the four operations	Pupil can solve problems such as 'Jack buys a bottle of water at $£ 1.20$ and a banana at 20 p and pays with a $£ 5$ note. What change does he get?	Pupil can solve problems such as 'Jack buys seven bottles of water and a pizza for $£ 3.50$ and gets 20p change when he pays with a $£ 10$ note. How much is each bottle of water?	Pupil can The pupil can make up problems involving several steps and prompting different calculation strategies such as 'Use the numbers 5, 4, 6, 7, 25 and 75 once each and any combination of the four operations to make the

Number

N20 Solve multi-step calculation
23 problems involving combinations of all four operations

N21 Consolidate solving calculation
24 problems involving scaling by simple fractions and simple rates

25
N22 Consolidate knowledge of multiples and factors, including all factor pairs of a number, and common factors of two numbers

Pupil can solve problems such as 'Zoe has $£ 5$. She buys three pints of milk at 59p each. She wants to buy some tins of soup which cost 85p each. How many can she afford?', using a strategy which avoids division for example.	Pupil can solve problems such as ' A fence is 2.4 m long. It consists of three panels and the posts are 12 cm wide. How wide is each panel?	Pupil can solve problems such as 'Use some or all of the numbers 1, 2, 3 and 4, no more than once each, and any combination of the four operations to make as many as possible of the numbers 1 to 50'.
Pupil can solve problems such as 'One packet of biscuits weighs 200 g . How much does $1 / 4$ of a packet weigh?'	Pupil can solve problems such as 'One packet of biscuits weighs 200 g . How much does $4 / 5$ of a packet weigh?'	Pupil can make up problems such as 'One packet of biscuits weighs 200 g . How much does $3 / 8$ of a packet weigh?'
Pupil can list the factors of numbers below 20 and arrange them in pairs that multiply to give 24 . The pupil can also list multiples of numbers in the multiplication tables.	Pupil can identify multiples or factors of a number from a set of numbers below 80 and list the factors of 50 as 1,$50 ; 2$, $25 ; 5,10$. The pupil recognises that 8 is a common factor of 40 and 64.	Pupil can solve problems involving factors and multiples such as 'Numbers are co-prime if they have no factors in common. Find all of the numbers below 50 that are coprime with 36 . What do you notice? Can you explain this?'

Coast Academies Maths Framework Step 6
Number

26				
N23 Consolidate recall of square numbers and cube numbers and the notation for them	Pupil can list the first ten square numbers and interpret 8^{2} as $8 \times 8=64$.	Pupil can identify whether a given number is a square number or cube number up to 200, interpret 6^{2} as $6 \times 6=36$ and $2^{3}=2 \times 2 \times 2=8$.	Pupil can sort the numbers below 500 into a Venn diagram with two sets: square numbers and cube numbers. The pupil can also interpret 34 as $3 \times 3 \times$ $3 \times 3=81$ and extend the idea to higher powers.	
27	N24 Consolidate recall of prime numbers up to 19	Pupil can identify the prime numbers below 12.	Pupil can correctly and promptly list the prime numbers up to 19.	Pupil can apply their knowledge of the prime numbers below 20 to quickly test numbers up to 400 to ascertain whether they are prime.

Coast Academies Maths Framework Step 6
Number

29	N27 KPI Divide numbers up to 4 digits by a two-digit whole number using the formal methods of short or long division, and interpret remainders as appropriate for the context as whole numbers, fractions or by rounding	Pupil can calculate $364 \div 13$ using the formal method of long division, with supporting jottings for the layout.	Pupil can calculate $3612 \div 42$ using the formal method of long division.	Pupil can calculate $57,324 \div 68$ using the formal method of long division.
30	N28 KPI Check answers to calculations with mixed operations and large numbers, choosing the most appropriate method, including estimation, and determining, in the context of a problem, an appropriate degree of accuracy	Pupil can choose an appropriate level of accuracy for the answer to a problem such as ' $£ 10$ is shared equally between three people. How much do they get each?': $10 \div$ $3=3.333 \ldots$ by rounding it to £3.33.	Pupll can check the answer to any calculation using an appropriate method, choosing to round it if appropriate, e.g. 'I buy 1.5 m of gold trimming for 14 decorations. How much do I need for each?': $1.5 \div 14$ $=0.10714 \mathrm{~m}$, so the answer is rounded_م 10 cm	pupil can check the answer to any calculation using an appropriate method, choosing to round it if appropriate, e.g. 'I buy 1.5 m of gold trimming for 14 decorations. How much do I need for each?': $1.5 \div 14=$ 0.10714 m , so the answer is rownded to 10 cm iustifivino
	N29 Check answers to calculations with all four operations involving any numbers by rounding	Pupil can check the answer to 8.9×1.9 by rounding and working out $9 \times 2=18$.	Pupil can check the answer to $8.9 \div 1.9+0.49$ by rounding and working out $9 \div 2+0.5=$ 5.	Pupil can check the answer to $8.9 \div 1.9+0.49 \times 3.4$ by rounding and working out $9 \div 2$ $+0.5 \times 3=6$, deploying the correct order for the operations.

Coast Academies Maths Framework Step 6
Number

N30 Associate a fraction with division	Pupil can recognise that $1 / 7$ can be interpreted as $1 \div 7$ and that $1 \div 5$ can be interpreted as one-fifth.	Pupil can recognise that threefifths can also be interpreted as $3 \div 5$ and that $7 \div 5$ can be interpreted as seven-fifths or one and two-fifths.	Pupil can choose whether to interpret 3/7 as three-sevenths or $3 \div 7$ depending on the context, justifying their choice.
N31 Consolidate understanding of equivalent fractions by extending to improper fractions	Pupil can recognise that $3 / 2$ and $6 / 4$ are equivalent.	Pupil can recognise that $7 / 5$ and $14 / 10$ are equivalent.	Pupil can recognise that 1 2/8 is equivalent to $11 / 4$.
N32 Identify the value of each digit in numbers given to three decimal places	Pupil can identify the 7 in 5.78 as meaning seven-tenths.	Pupil can identify the 7 in 9.587 as meaning seventhousandths.	Pupil can identify the 7 in 6.578 as meaning sevenhundredths or 70-thousandths.

N33 Multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places

Pupil can calculate $5 \times 10=50$ and $34 \times 100=3400$ and, with Pupil can calculate $23 \div 100=$ prompting, work out $7 \div 10=$ 0.7

Pupil can extend their understanding of multiplying and dividing whole numbers by 10,100 and 1000 to calculating $5.8 \div 100=0.058$ and $4.402 x$ $100=440.2$.

Pupil can identify the common
Pupil can identify that the numerator and denominator of $4 / 8$ can both be halved and then do so. With prompting, the pupil can then repeat the process to obtain 1/2.

	Pupil can extend their understanding of multiplying Pupil can calculate $23 \div 100=$ 0.23, and $306 \div 1000=0.306$.
nd dividing whole numbers by 10,100 and 1000 to calculating $5.8 \div 100=0.058$ and $4.402 x$ $100=440.2$.	
Pupil can relate their knowledge of hundredths to percentages. They know that 1%, one hundredth, 0.01 and $1 / 100$ all represent the same amount and that is one in every hundred.	Pupil can readily recognise percentages as hundredths and apply this to solving problems.
Pupil can identify that four is a common factor for the numerator and denominator of $8 / 12$ and divide by it to get $2 / 3$.	Pupil can identify the common factors for the numerator and denominator of a fraction, realising that the highest common factor is needed to reach the simplest form in one step.

N36 Use common multiples to express fractions in the same denomination

Pupil can express halves, quarters and eighths all as eighths

Pupil can change $1 / 3$ to
twelfths by multiplying both
the numerator and
denominator by four, and 3/4 to twelfths by multiplying both the numerator and the denominator by three.

Pupil can express $2 / 3$ and $4 / 5$ as fifteenths, knowing that 15 is a common multiple of 3 and 5.

Pupil can identify 0.2 as the decimal equivalent of $1 / 5$ by converting $1 / 5$ to $2 / 10$

Pupil can identify 0.125 as the Pupil can interpret any fraction decimal equivalent of $1 / 8$ by deducing it from the decimal equivalent of $1 / 4$
with a power of 10 as its denominator in terms of decimal notation.

N38 Calculate decimal fraction equivalents for a simple fraction

Pupil can calculate 0.2 as the decimal equivalent of $1 / 5$ by converting $1 / 5$ to $2 / 10$.

N39 Consolidate understanding of the connection between fractions, decimals and percentages

Pupil can use manipulatives to Pupil can draw diagrams to show that 25% and $1 / 4$ are equivalent.
show why $25 \%, 1 / 4$ and 0.25 are equivalent

Pupil can select the larger fraction out of $2 / 3$ and $3 / 4$ using appropriate images.

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can explain why $20 \%, 1 / 5$
and 0.2 are equivalent.
$\begin{array}{l}\text { Pupil can recall the decimal } \\ \text { and percentage equivalents of } \\ \text { halves, quarters, thirds, fifths } \\ \text { and tenths in a variety of } \\ \text { contexts, selecting the most } \\ \text { appropriate form to use for } \\ \text { that context and the numbers } \\ \text { involved. }\end{array}$
$\begin{array}{l}\text { Pupil can devise a general set } \\ \text { of instructions for selecting the } \\ \text { larger of two fractions. }\end{array}$

Pupil can select the larger fraction out of $17 / 20$ and $5 / 7$.
of instructions for selecting the larger of two fractions.

N41 Compare and order fractions, including fractions

Coast Academies Maths Framework Step 6
Number

N42 Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions

N43 Multiply simple pairs of proper fractions

Pupil can calculate $1 / 3+1 / 2 \quad$ Pupil can calculate $3 / 4+2 / 5=$ Pupil can calculate $3 / 4+2 / 5$?	with supporting diagrams.	$13 / 20$.	$1 / 6=59 / 60$.

Pupil can calculate $1 / 2 \times 1 / 3$ Pupil can calculate $1 / 3 \times 1 / 4 \quad$ Pupil can show how to multiply using appropriate images and using appropriate diagrams or $1 / 3$ and $1 / 5$ using an with prompts

Pupil can calculate $1 / 3 \div 2$ using an appropriate diagram and suitable prompts.

Pup
using a diagram.

Pupil can explain how to divide a fraction by a whole number and why it works.

N45 Round decimals to three decimal places or other approximations depending on the context

Pupil can round an answer involving decimals of pounds to two decimal places as it is to the nearest penny

Pupil can calculate 2.6×12 using an appropriate written method including jottings.

Pupil can round 0.6666 ... to Pupil can justify rounding to a 0.667 when working with length and 0.67 when working places by referring to the with money.
context.

N46 KPI Use written division methods in Pupil can calculate $17 \div 5$ cases where the answer has up to two decimal places
using jottings and with appropriate prompts

Pupil can apply the formal methods of short or long division to calculations which have answers of several decimal places.

N47 Multiply one-digit numbers with up to two decimal places by whole numbers

Pupil can calculate 3.78×27
using an appropriate written method.

Pupil can apply the formal method of long multiplication or the grid method to work out 23.38×83.

N48 Multiply a quantity that represents a unit fraction to find the whole quantity

Pupil can solve problems such as 'Half a packet of biscuits is ten biscuits. How many biscuits are in the whole packet?'	Pupil can solve problems such as 'One-quarter of a packet of biscuits is five biscuits. How many biscuits are in the whole packet?'	Pupil can solve problems such as 'A packet of biscuits plus a third of a packet of biscuits is 36 biscuits. How many biscuits are in one packet of biscuits?' (answer 27).
Pupil can solve problems such as 'I have $£ 5$ to share between three people. How much do they get each?' (answer $£ 1.66$ with $2 p$ to be given to charity!).Pupil can solve problems such between 15 people. How much do they get each?' (answer $£ 1.33$ with $1 p$ to be given to charity).	Pupil can make up problems involving fractions, decimals and percentages which require the answer to be rounded in some way.	
Pupil can solve problems such as 'Which is greater: $3 / 4$ of $£ 15$ or 20% of $£ 50$?	Pupil can solve problems such as 'Place the following in ascending order of size: 65%, $2 / 3,0.6,5 / 7 '$	Pupil can make up problems involving fractions, decimals and percentages which involve at least three steps.

